Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic logistic regression and dynamic model averaging for binary classification.

We propose an online binary classification procedure for cases when there is uncertainty about the model to use and parameters within a model change over time. We account for model uncertainty through dynamic model averaging, a dynamic extension of Bayesian model averaging in which posterior model probabilities may also change with time. We apply a state-space model to the parameters of each mo...

متن کامل

diagnostic and developmental potentials of dynamic assessment for writing skill

این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...

15 صفحه اول

An improved model averaging scheme for logistic regression

Recently, penalized regression methods have attracted much attention in the statistical literature. In this article, we argue that such methods can be improved for the purposes of prediction by utilizing model averaging ideas. We propose a new algorithm that combines penalized regression with model averaging for improved prediction. We also discuss the issue of model selection versus model aver...

متن کامل

Penalizied Logistic Regression for Classification

Investigation for using different penalty functions (L1 absolute value penalty or lasso, L2 standard weight decay or ridge regression, weight elimination etc.) on the weights for logistic regression for classification. 5 data sets from UCI Machine Learning Repository were used.

متن کامل

Logistic regression for graph classification

In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression on graphs. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics. Our method is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2011

ISSN: 0006-341X

DOI: 10.1111/j.1541-0420.2011.01645.x